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Canonical Symmetry of a Constrained Hamiltonian 
System and Canonical Ward Identity 
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An algorithm for the construction of the generators of the gauge transformation 
of a constrained Hamiltonian system is given. The relationships among the 
coefficients connecting the first constraints in the generator are made clear. 
Starting from the phase space generating function of the Green function, the 
Ward identity in canonical formalism is deduced. We point out that the quantum 
equations of motion in canonical form for a system with singular Lagrangian 
differ from the classical ones whether Dirac's conjecture holds true or not. 
Applications of the present formulation to the Abelian and non-Abelian gauge 
theories are given. The expressions for PCAC and generalized PCAC of the AVV 
vertex are derived exactly from another point of view. A new form of the Ward 
identity for gauge-ghost proper vertices is obtained which differs from the usual 
Ward-Takahashi identity arising from the BRS invariance. 

1. ~ T R O D U C T I O N  

The discussion of symmetry of a system is usually based on examination 
of the Lagrangian in configuration space (coordinate space) and the corres- 
ponding transformation expressed in terms of Lagrange's variables. The sys- 
tem with a singular Lagrangian is subject to some inherent phase space 
constraint and is called a constrained Hamiltonian system. The classical 
canonical symmetry properties for a constrained Hamiltonian system are 
discussed in previous work (Li, 1991, 1993a). Here the quantum symmetry 
in the canonical formalism for a constrained Hamiltonian system is further 
investigated. 

Dirac's theory of constrained systems plays an important role in modem 
quantum field theories. By using it, many of the central problems which 
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appeared in the development of the quantization procedures of the gauge and 
gravitational fields have been solved. In spite of these general achievements 
some basic problems in this theory are still widely discussed in the literature. 
One of them is Dirac's (1964) conjecture. Dirac conjectured that all the first- 
class constraints are generators of the gauge transformation. From time to 
time there have been objections to Dirac's conjecture (Li, 1993b,c). But we 
do not know of any physically important system in which Dirac's conjecture 
leads to the wrong results. 

The paper is organized as follows. In Section 2 an algorithm for the 
construction of the generator of the gauge transformation is discussed which 
is slightly different from the Castellani (1982) treatment, and a generalization 
to the field theory is given. A clear discussion is made to show that the time 
evolution of the coefficients of the secondary first-class constraints in the 
generator of the gauge transformation is determined by the coefficients of 
the primary first-class constraints (Galv~o and Boechat, 1990). A comparison 
of both results (Castellani, 1982; Galvgo and Boechat, 1990) is discussed. 
In Section 3, based on the invariance of the translation in canonical variables, 
the quantum equation of motion in canonical form for a constrained Hamilto- 
nian system is derived. We point out that this quantum canonical equation 
of motion for a system with singular Lagrangian is different from the classical 
canonical equation of motion whether Dirac's conjecture holds true or not. 
In Section 4 the Ward identity on the canonical formalism for a constrained 
Hamiltonian system is deduced. What is different from the traditional formula- 
tion is that we do not carry out the integration over momenta. In Section 5, 
a preliminary application of our results to a model in field theory which is 
functionally equivalent to the mixed Chern-Simons theory is given, and the 
generator of the gauge transformation and some relations of proper vertices 
are found. In Section 6, an application of the present formulation to the 
non-Abelian gauge theory is illustrated, and the expressions for PCAC and 
generalized PCAC of the AVV vertex are derived. A comment is made to 
argue that the constraints had been ignored in deriving the Ward-Takahashi 
identity by some authors (Suura and Young, 1973). A new form of the Ward 
identity for gauge-ghost proper vertices is derived which differs from the 
usual Ward-Takahashi identity arising from the BRS invariance. 

2. THE GENERATOR OF GAUGE TRANSFORMATION 

Gauge theories play an important role in modern field theories. These 
theories have a gauge invariance under the local transformation (or gauge 
transformation). The algorithm for the construction of the gauge generator 
of the gauge transformation of a constrained Hamiltonian system has been 
discussed (Castellani, 1982; Galvao and Boechat, 1990; Henneaux et al., 
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1990). This problem will be studied here starting from another point of view 
(Castellani, 1982). 

Consider a system described by the field variables t~(x) (a = 1, 2 . . . . .  
N), x = (t, x). The Lagrangian of the system depends on a set of the variables 
t~(x) and their first-order derivatives: ~s t~,~), t~,~ = 0 ~  ~ = Ot~/Ox ~ (tz 
= 0, l, 2, 3). The flat space-time metric is "tl~ = diag(+ - - - ) .  In many 
interesting physical system the Lagrangian is singular (for example, gauge 
theories), i.e., the Hessian matrix H ~  is degenerate 

det( 02~ det(H~) = \ ~ ]  = 0 (1) 

The Legendre transformation introduces canonical momenta "rr,~ = 0 ~ 1 0 ~ ;  
one can then go over from the Lagrangian description to the Hamiltonian 
description. It is supposed that the rank of the Hessian matrix is N - R; then 
one cannot solve all ~ from the definition of canonical momenta because 
of (1). This implies the existence of constraints 

+a~ ~, 7r~) ~ 0 (a = 1, 2 . . . . .  R) (2) 

where the sign ~ (weak equality) means equality on the constrained hypersur- 
face. Equation (2) is called the primary constraint. The classical equations 
of motion of the Hamiltonian system are given by (Gitman and Tyutin, 1990) 

gHr  8 Hr  
+~ ~ - -  ~-. { t~ ~, n r } ,  "ira ~ - - -  ~ { ~r~, Hr}  (3) 

where Hr  is the total Hamiltonian, H r  = f d 3 X(~c + ha+O), ]~'c is the 
canonical Hamiltonian density, ~c = 'rr,~+ ~ - ~ ,  ha = ha(X) are Lagrange 
multipliers, and {. ,  �9 } denotes the Poisson bracket in field theories. Using 
the stationarity conditions of primary constraints, { +0, Hr} ~ 0, one can 
define successively the secondary constraints according to the Dirac- 
Bergmann algorithm 

+k ~ {+k-l, Hr} (4) 

This algorithm is continued until +m satisfies 

+am+l {+m, Hr} o k = Cak+b (k <-- m)  (5) 

All the constraints qb are classified into two classes. A +a is defined to be 
of first class if { +a, +b } = 0 (mod +~) for all +b- Otherwise it is of second class. 

For the sake of simplicity, all the constraints of the system are assumed 
to be of  first class. Under an infinitesimal gauge transformation suppose the 
two trajectories (t~(x), w~(x)) and (+~(x) + 8t~(x), Ir~(x) + ~-rr~(x)) both 
satisfy the constraint conditions (2) and equations of motion (3); then varied 
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trajectory equations (3) and constraint conditions (2) can be expanded to first 
order in small variations of canonical variables, and using equations (2) and 
(3) for the unvaried trajectory, one finds 

f [ 82Hr 82HT ] 
8 ~ 8 w ~  

f ~ 82HT 8d# 82HT ] 8r ~-. -- d3x [ 80--~- ~ "r + 8,n.1380----"-~ 8'rrf) 

(6a) 

(6b) 

04, 0 o+ o 
- -  8tW + 8'rr,~ ~-- 0 (6c) 
Ot~" 07r~, 

Now let the variations of canonical variables be generated by a phase space 
functional G and be parametrized by the arbitrary infinitesimal functions 
ej(x); we consider a generator of gauge transformation of the type 

( d3x eJ~)G{(0 ~', 7r~) (7) G 
./ 

where e)*) = O~ej.(x), and ej(x) are independent arbitrary functions of time- 
space. The variations of O~(x) and "rr~,(x) induced by G are given by 

8G 8G 
8~ ~ = { ~ ,  G} - 8w~ = { ~ ,  G} - (8) 

8 ~ '  8~ ~ 

Substituting (8) into (6), because of the arbitrariness of ej(x), one finds the 
following conditions on the G{: 

0 
[G~_ t + {Gak, Hr}] = 0 (mod 4,0) (9a) 

0t~" 

0 
- - [ G  J_ 1 + {G{,Hr}]  = 0 (mod4,a ~ (9b) 
3,rra 

{G~, 4,0a} = 0 (mod 4,0) (9c) 

Since we are considering the variations that leave the trajectory on the 
constraint hypersurface, we should add the further requirement that {G{, 
4,n} = 0 (mod 4,0) for the secondary constraints 4,,] to the third set of equations 
(9c). Thus, all the Cdk have to be first-class constraints. The Hc can be 
substituted instead of the Hr, owing to the assumption that all the constraints 
are of first class. From (9) one finds the following recursive relations in a 
manner analogous to the discussion which was given by Castellani (1982): 
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{G~, H0) = 0 (mod qb 0) (10a) 

G{_, + {G{, Hc} = 0 (mod dp ~ (10b) 

GJm = 0 (mod ~b ~ (10c) 

Therefore, all the G~ have to be first-class constraints and, with the exception 
of those first-class constraints which arise as powers • (Castellani, 1982), 
are part of the gauge generator. The G~-I is deduced from G~ according to 
the recursive relations (10b). Moreover, G~ must be a primary first-class 
constraint, for every primary first-class constraint using (10) to construct the 
chains of G{ until G J0 is reached. After the G~, are found, the generator G of 
the gauge transformation can be constructed by using (7). 

Even when second-class constraints appear, if the series of first-class 
constraints derived from primary first-class constraints are completely sepa- 
rated from the series of second-class ones, the above formulation to construct 
the generator of the gauge transformation is valid for such a system. 

Galv~o and Boechat (1990) discussed the relationships of the coefficients 
connected with the first-class constraints in the generator of the gauge transfor- 
mation. But they discarded the last term on the left-hand side of equation 
(3.8) in their paper. Here is a simple treatment to obtain the fundamental 
results clearly. For the sake of simplicity, let us consider a system with finite 
degrees of freedom and suppose that the set of all independent constraints 
is of first class and split these constraints into primary ~ba ~ and secondary 
X~ ones. According to Dirac's prescription, the generator of the gauge transfor- 
mation for a constrained Hamiltonian system endowed with primary and 
secondary first-class constraints is constructed as a linear combination of all 
these first-class constraints. Thus the generator of the gauge transformation 
can be expressed as 

G = Oa(t)+ ~ + tOka(t)• (11) 

The generator G should satisfy the following conditions: 

OG 
- - +  {G, Hr} = 0  (mod~b ~ (12a) 
Ot 

{ G, +0 } = 0 (mod +0) (12b) 

Equations (12a) and (12b) are necessary and sufficient conditions for 
G to be the generator of the gauge transformation (Sugano, 1990). Substituting 
(11) into (12), one gets 

dco~ 
(Da{Xa, He} = 0 (mod ~b ~ (13) Oa{(~) O, He} + - ~  Xa k + k k 
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The quantities {~ba ~ He} and {Xa k, He} can be expressed as 

{Xa k, n c  } = Otae,Xe,kk' k' (mod ~b ~ (14a) 

{ 6  ~ He} = k k 13~S• (mod ~b ~ (14b) 

Substituting (14) into (13) and taking into account the linear independence of 
all constraints and from equation (12b), one obtains the following differential 
equations related to the coefficients Oa(t) and to~(t) in the generator (11): 

dto~ 
kk'. k' + = 0 (mod ~b ~ (15) - -  + Otae'W e, ~k fo f  dt 

This result was obtained by Galv~o and Boechat (1990). Equation (15) implies 
that the time evolution of the coefficients of the secondary constraints in the 
generator of the gauge transformation is not independent, but is determined 
by the coefficients of the primary constraints. 

We apply these results to the case discussed by Castellani (1982). 
According to the Dirac-Bergmann algorithm of the constraints, from the 
primary constraints one can define successively the secondary constraints. 
Using equations (14) and (15), one finds 

(O~a(t) + Oa(t) = 0 (16a) 

d~ka(t) + 0ka-l(t) = 0 (16b) 

Let 0(t) = dme(t)/dt m = e~M~(t) (M = rn + 1); from (11) and (16) one 
obtains the generator of the gauge transformation as 

G ~- -a~:(M)tl~0"Va + (-1)~e~ak)X~ (17) 

This result agrees with the conclusion of Castellani (1982). 

3. TRANSLATION INVARIANCE OF GENERATING 
FUNCTIONAL IN EXTENDED PHASE SPACE 

Let us first consider a system with regular (nonsingular) Lagrangian. 
Introducing the exterior sources J~,(x) and J~(x) for the fields O~(x) and the 
momenta ~(x) ,  respectively, we can write the generating functional of the 
Green function for this system as 

Z[J, J1] = I ~t~~ ~,rr,~ exp{i[Ie + I dgx (J,~t~~ + JCprr,~)l } (18a) 

where l P is a canonical action, 
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I P = f ~ P d 4 x = f ( ~ r j ~ - ~ c )  d4x (18b) 

The Green function G(xl, xz . . . . .  Xn) is given by 

G(x~, x2 . . . . .  xo) = (O]T[q,~(xO~,'~(x2) . . .  qe(x~)][O) 

1 ~Z[J, Jl] J=Jl =0 (19) = i n ~Jn(Xl)~J~-~2) :--" ~J~(xn) 
Let us consider a special translation of ~(x):  

~ ~,~(x) (20) 

where e~(x) (c~ = 1, 2 . . . . .  N) are infinitesimal arbitrary functions and their 
value on the boundary of the time-space domain vanishes. The Jacobian of 
the transformation (20) is equal to unity. The generating functional (18a) is 
invariant under the transformation (20), thus 

j [ f ( ~ l e  ) ]  Z[J, J1] = ~t~ ~' ~6'rr,~ i + i d4x \~t~e~ + Ja 6"(x) 

• (21) 

where 

~I e ~Hc 
- - -  q r ~ - - -  (22) 

The translation invariance of the generating functional implies 8Z[J, J1]/Se '~ 
[.~=o = 0; this leads to 

f (~Ie ) { f  ) ~ ~nv~, ~ 8 ~  + J~, exp i d4x (~P + J~q~'~ + J~'~r,~) = 0 (23) 

Differentiating (23) with respect to J,~(x) n times, one obtains 

• J~,0a + J]"rr~,]} = 0 (24) 
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Let J~ = J]' = 0; one gets 

= i ~  ~ .  ~(x - x~) (o [ r* [q ,~ (xO . . .  ~ , - , ( x ~ _ O , ~ * , ( x ~ + ~ )  . . .  ~,~n(x.)l]O) 

~ (25) 

where the symbol T* stands for the covariantized T product (Suura and 
Young, 1973). Fixing t and letting 

tl, t2 . . . . .  tm ---) +~, tin+l, tm+a . . . . .  tn ~ --co 

and using the reduction formula (Young, 1987), we find that the expression 
(25) becomes 

(out ,  m [ { g l P l [ n - m ,  i n ) = 0  (26) 

Since m and n are arbitrary, this implies 

= 0 (27a) 

Similarly, let us only consider the transformation of the canonical momenta 
'rr,~(x); we obtain 

- 0 (27b) 
~Tr~ 

where ~ll~/~Tr~ = d) ~ - ~Hc/~Tr~. The operator expression (27) is the quantum 
canonical equation for a system with a regular Lagrangian. 

For a system with a singular Lagrangian, due to the singularity of the 
Lagrangian, the motion of the system is restricted to a hypersurface of the 
phase space, determined by a set of constraints. Let Ak(t~ ~', "rr~) ~ 0 (k = 1, 
2 . . . . .  K) be first-class constraints, and 0j(t~ ~, 7r,~) ~ 0 ( j  = t, 2 . . . . .  J) 
be second-class constraints. The gauge conditions connecting the first-class 
constraints are Ok(t~ '~, ~r,~) ~ 0 (k = 1, 2 . . . . .  K). The generating functional 
of the Green function for this system is given by (Gitman and Tyutin, 1990) 

Z[J, J~] = ~ ~df" ~Tr~ ~ ~(0j)~(Ak)~(lqt) det[ lAg, 
J j,k,l 

X [det[{Oi, Oj}l]l/2exp(i f d4x(~P + Jat~a + J~'tra)} (28) 
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Using the integral properties of the Grassmann variables C(x) and C(x), 
we obtain 

det I {Ak(x), Bj(y)}[ 

= f ~Ct(x) ~-Ck(y) exp[i f d4x d4y-Ck(x)[Ak(x), Bt(y)}Ct(y)] (29) 

Thus, the expression (28) can be written as 

Z[J,J,]=f~*~r~3km~C~-Cexp{i[IPeff (30a) 

+;d4x(j~*c'+J~Tr~)]) 

where 

l~ff = I d4x ~eff = f d4x ('~e q- ~Lm -I- ~gh) (30b) 

~Lm : hjOj "~ kkAk + )kl[~ l (30c) 

f ~8~ = d4y [C~(x){Ak(x), ft~(y)IG(y) + ~ C~(x)(O~(x), 0i(y)}G(y)l 
(30d) 

km = (hi, hk, ht) are multiplier fields. The generating functional (30a) is 
invariant under the translation of the canonical variables; one can still proceed 
in the same way to obtain the quantum canonical equations for a system with 
a singular Lagrangian, but in this case one must use I~ff instead of I e in 
equation (27). The invariant of the generating functional under the translation 
of Lagrange multipliers leads to the constraint and gauge conditions. 

In classical theories of constrained Hamiltonian systems, Dirac conjec- 
tured that all the first-class constraints (primary and secondary) are generators 
of gauge transformations. In turn, this problem is closely related to the 
equivalence of Dirac's procedure using the extended Hamiltonian and Lagran- 
gian descriptions (Costa et al., 1985; Cabo, 1986; Henneaux et al., 1990). 
From time to time there have been objections to Dirac's conjecture (Li, 
1993b,c). According to the above discussion we see that in quantum theories 
of constrained Hamiltonian systems the canonical equations of motion are 
derived from the canonical effective action IPff, which involves all constraints 
and gauge conditions. The quantum canonical equations differ from classical 
ones whether Dirac's conjecture holds true or not. 
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4. CANONICAL WARD IDENTITY FOR CONSTRAINED 
HAMILTONIAN SYSTEM 

As is well known, the Ward (or Ward-Takahashi) identity plays an 
important role in quantum field theories. The treatments for this identity 
usually are based on examination of the Lagrangian (or effective Lagrangian) 
in configuration (coordinate) space and the invariance of the generating 
functional of the Green function under the corresponding transformation 
expressed in terms of Lagrange's variables (Suura and Young, 1973; Lhallabi, 
1989). In the more general case (especially for the constrained Hamiltonian 
system), the phase space generating functional cannot be simplified by car- 
rying out explicit integration over momenta. Then the generating functional 
cannot be represented in the so-called Lagrangian form, i.e., in the form of 
a functional integral only over coordinates of the expression containing a 
certain effective Lagrangian. In certain cases, even if the integration over 
momenta can be carried out, the effective Lagrangians sometimes are singular 
(Lee and Yang, 1962; D u e t  al., 1980). This singularity is expected to cancel 
in the procedure of  renormalization. Therefore a discussion of symmetry in 
phase space for those system is necessary. 

Inthe expression (30a), we introduce the corresponding exterior sources 
for h,.,C, and C fields, respectively, and denote d0 ~ = (t~ ~, hm, C, C), J,~ = (J,. 
Urn, f;, ~); the generating functional of the Green function for the constrained 
Hamiltonian system can be written as 

Z[J,. J]'] = J ~dO '~ ~.rr,~ exp{i[Iee~r + J~,qb ~' + J~"rr,~l} (31) 

Let us now consider a general transformation in extended phase space; the 
infinitesimal transformation is given by 

I x~ , = x  ~ + Ax ~ = x  ~ +R~e~(x)  
+~,'(x') +~(x) + ~4,~(x) = +%x) + S ~ ( x )  

I. r r + Arr~(x) + r ~ ( x )  
(32) 

where e '~ (or = 1, 2 . . . . .  r) are infinitesimal arbitrary functions, whose values 
on the boundary of the time-space domain vanish, R~, Sp,, and T~,,~ are linear 
differential operators 

R~ = a~v(k)Ov(k), S~ = b~(oO~(t), T,~,, "~" ~v(m).3 ~acr u~,(m) 

,,(n) = ~ -. �9 ,~.~ 0~(.~ =~.0~0~ . . -  o~opj (33) 
v ~f  

n n 
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a, b, and c, etc., are functions of  x, ~b '~, and "rrc,. The variation of the canonical 
effective action (30b) under the transformation (32) is given by 

f ,4 [SI~ee ~l~ee ~leeff = a x~-~--~ ~b ~' + ~ ~ ,~  + 0~,[('rr~b'* - ~eef)AxW] 

+ dt (~r~gqb~) (34a) 

where ~e~ is a canonical Hamiltonian density of the field qb% and 

~b ~' = A~b ~' - ~b,~Ax ~, g~,~ = Arr,~ - ,rr,,,~Ax~ (34b) 

~l~rf ~Heff ~Ieeef +,~ ~Heff 
- "tr,~ . . . . .  (34c) ~b ~ ~d~ ~' ~rr~ ~ 

Let it be supposed that the Jacobian of the transformation (32) is J[~b, "rr, e]. 
From the boundary conditions of e*(x) and the invariant of the generating 
functional (31) under the transformation (32), one has 

Z[Ja, J~]= f ~dpa~'rra[J[~,1r,~] + i~l'ff + i f d4x(J,~a + J~'rr~,)] 

• exp(i[l,ff + f d4x (j,~~ + J~'rr,~)]} (35) 

The invariance of the generating functional (31) implies ~Z/~CI~= o = 0. 
Differentiating (35) with respect to r and setting J~ = J~' = 0, one obtains 

+ - e x p 0 / C . )  = 0 ( 3 6 )  

S~, and ~P~, are where j o  = 8J[~b% -rr, e]/Se*[e~=0, and/~$, -a adjoint operators 
with respect to R~, S~, and Tc,,~, respectively (Li, 1987). The Green function 
connected with (36) is given by 

S ~ _ _  -v .  a ~ [ ~ I P f e ' ~  

( 8Ie~f'~l > 
- R~ w~'~ 3,r~,]_] l0 = 0 ( 3 7 )  

~r~=a~IO~ ~ 

According to the invariance of the generating functional, from (35) one can 
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also obtain the canonical Ward identities for the constrained Hamiltonian 
system for the case J = 1: 

- R~ ,rr~,~ a,tr,~) " '~ Z[J~, J~'] = 0 (38) 
~* ->7 ~.s-'~"~-->7 ~ 

Differentiating (38) with respect to the exterior sources, one can obtain the 
other forms of the canonical Ward identities. 

In the following sections we give some preliminary applications of the 
above results to gauge field theories. 

5. ABELIAN CASE 

Consider the model with the Lagrangian 

1 1 
= - ' ~  F ~ F  ~v + -~ (0~6  - mB~)(O~6 - m B  ~) (39a) 

F~,  = O~B~ - O~B~ (39b) 

which is functionally equivalent to the mixed Chem-Simons one (Dorey and 
Mavromatos, 1990). The Chern-Simons theory plays an important role in 
superconductivity. The momenta conjugate to B~(x)  and 6(x) are 

0~ 
~r~(x) - oB~(x~) - F ~  (40a) 

O ~  = _ m B O ( x  ) + +(x)  (40b) ~(x) = o+(x) 
respectively. The primary constraint is only 

6 ~ = T~ ~ 0 (41) 

The canonical Hamiltonian is given by 

Hc= f d3x ~<= f d3x (~B~ + w+- Y.) 

f [1 1 l 1 2 = d3 x 7r 2 --}- 1 'IT 2 + 7 FikFik + 2176" 7 6  + 2 mBi 

- mBiOi6 + (Oi'rri + m'rr)B ~ (42) 
d 
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and 

= f d3x ('~c + h+ O) (43) n r  

The stationarity condition of ~b ~ yields the following secondary constraint: 

X = -Oi'rri - m,rr ~ 0 (44) 

The stationarity of the secondary constraint • does not yield any new con- 
straint. All constraints A~ = +0 and A2 = • are of first class. Then one can 
construct the generator of  the gauge transformation as follows: 

G = I d3x [e(X)(Oi"tTi At- m'rr) + e(x),07r ~ 

= f d3x ['rr~O~e(x) + mxre(x)] (45) 

This G produces the following gauge transformation: 

{ B~(x) = B~(x) + {B~, G} = B~ + O~e(x), "rr~'(x) = 1r~(x) (46) 
+'(x) +(x) + {~, G} = d?(x) + me(x), 'rr' = "rr(x) 

Under the transformation (46) the canonical action is invariant. 
According to the rule of path integral quantization, for each first-class 

constraint, one must choose a gauge condition. Consider the Coulomb gauge; 
~~2 = c3iBi ~ O, the stationarity of f~2; one has another gauge constraint, f~  
= 0ia'r,- + VZA ~ ~ 0. It is easy to check that detl { A,~, f ~  }l is independent 
of fields, and thus one can omit it from the generating functional of the Green 
function; then one has 

z[J~, J~, J,, Jl, uk, v~] 

= f ~B~ 5~'rr~ ~ b  5~'rr ~ k  ~tot 

•  "rr+ Uk~k+ Vltol]} 

(47a) 

where 

~fff~ = ~e + S~t,~ = ~t, + Ix~Ak + tolflt (47b) 

Uk and Vl are exterior sources corresponding to the multiplier fields ~k(x) 
and col(x), respectively. We denote qb ~' = (BW, qb, P~k, o~t), v,~ = (~r~, w), J~ 
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= (Jr J, Uk, Vl), and J~ = (Jr J0; thus the generating functional (47a) can 
be written as (31). 

The canonical action is invariant under the transformation (46), and the 
Jacobian of transformation (46) is equal to unity. The invariance of the 
generating functional (47a) under (46) implies the canonical Ward identity 

-O~ ~ + -~2 + mJ - O~J ~ Z[J, J~] = 0 (48) 

Let Z[J, Jl] = exp(iW[J, J1]), and use the definition of F(+ ~, 7r~] which is 
given by performing a functional Legendre transformation on W[J, Jl], 

F[~b a, 'rra] : W[J, Jl] - ~ d4x (j,~+a + J~'ara) (49) 
J 

and 

8W 
aJ~(x) 

aW 
aJ?(x) 

Then (49) becomes 

~F 
- -  - + ~ ( x ) ,  - -  - J ~ ( x )  (50a) 

a+~(x) 

~F 
- -  - ~ r ~ ( x ) ,  - -  - J ? ( x )  ( 5 O h )  

a,rr~(x) 

8F 8F 
-aoV2Co,(x) + Vz~(x) - m ~ + a~ aB~(x~ - 0 (51) 

Differentiating (51) with respect to ~b(x) and setting all field variables (includ- 
ing multiplier fields) equal to zero, one gets 

a2F[O] 1 a2F[O] 
- a~ (52)  

~d~(Xl)~b(x2) m ~B~.(xt)~d~(x2) 

Differentiating (51) with respect to B,,(x) and setting all fields equal to zero, 
one obtains 

8ZF[0] a2F[0] 
ar 8B~(xl)aB~(x2) = m a+(xl)SB~(x2) (53) 

Differentiating (51) with respect to qb(x) and B~(x) and setting all fields equal 
to zero, one obtains 

a3F[0] a3F[0] 
Oo. ~Bp~(xl)~d~(x2)~Bv(x3) = m ~t~(Xl)~b(x2)aBv(x3 ) (54) 

Differentiating (51) with respect to Bp(x) and B,,(x) and setting all fields equal 
to zero, one obtains 
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~3F[0] ~3F[0] 

O~ ~B~(xl)~Bo(x2)~Br(x3 ) = m 5~(Xl)~Bp(xz)~Bv(x3) (55) 

From (54) and (55) one also gets 

m 2 83F[0]  = 0~0 o 83F[0] (56) 
~ ( x 1 ) ~ b ( x 2 ) ~ B v ( x 3 )  ~ B ~ ( X l ) ~ B p ( x z ) ~ B l , ( x 3 )  

The expressions (52)-(56) represent some Ward identities for proper vertices. 
Differentiating (51) with respect to 7r(x2) and w(x3) and setting all fields 
equal to zero, one obtains 

83F[0] 83F[0] 
Op, ~Btx(Xl)~,.ff(x2)~,,ff(x3) = m ~r (57) 

Using (40b), we can express (57) in terms of the variables in configura- 
tion space. 

From the above example we see that in order to derive the canonical 
Ward identity for the proper vertices, one only needs to require that the 
canonical action is invariant under the gauge transformation in phase space. 
The generator of the gauge transformation can be constructed once the Hamil- 
tonian and the first-class constraints of the theory are given. Using this gauge 
invariance, the canonical Ward identity in phase space is deduced immediately. 

6. NON-ABELIAN CASE 

The Lagrangian of the non-Abelian gauge field B~(x) coupled to a spinor 
field ~J(x) is given by 

_ 1  F~F~ ~ + -~[i~l~(O ~ _ igB~T~ ) _ m]~ (58a) 

- gfbcB~B~ (58b) 

where T ~ are generators of gauge group G_, and f~,c are structure constants of 
group G. The canonical momenta of dJ, ~, and B~ are 

= i~/o, ~ = O, 'rr~ = - F  ~ (59) 

respectively. The canonical Hamiltonian of this system is given by 

: = - -  no(Dib , f f  b ig,rrrat~) -JV - ~ - - q - - a  Hc d3x ~l~c d x -~'rra'rr a a o i _  

1 1 
-}- "~ Tc'wO'wi( oi~J) - -  2 ( aiT~k)'wO'~i~J 

ig'rrsP'viOB~Ta - im~r~~ ] (60) 
J 
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where 

D~b~ = ~O~ + gf~,cB~ (61) 

The primary constraints are 

01 = w - i~"/0 ~ 0 (62) 

0z = ~ ~- 0 (63) 

A~ = ~o ~ 0 (64) 

The total Hamiltonian is given by 

H r  = I d3x (~.c + kl01 + )k202 + I~AI~) (65) 

The stationarity condition of 0j (j = 1, 2), { 0j, H r }  ~ O, yields the equation 
to determine the Lagrange multipliers kj ( j  = 1, 2). The stationarity of A'~ 
yields the secondary constraints 

X ~ = Dib~b~ i _ ig~rTat~ ~ 0 (66) 

Let 

A~ = X a + igT~(OlqJ -- ~02) ~ 0 (67) 

One can easily check that the constraints A~ and A~ are of first class, and 
the constraints 01 and 02 are of second class. 

The gauge conditions can be chosen as (Sundermyer, 1982) 
~'~ i a = 0 ~ i  + MabB~b ~" 0 (68) 

~ = OiA~ ~ 0 (69) 

The factors detl{ Oi(x), Oj(x)}1 are independent of field variables, which may 
be omitted from the integrand, and (Sundermyer, 1982) 

detl {Aa, ~ ' } ]  = detl MabS(x - Y)I = det Mc (70) 

Thus, the generating functional can be written as 

z[J, J~, -~, ~, ~, ~, ~, ~, u, x, YI 

{f • exp i d4x [~Pff + Ja'Av~ + Jll~a + -~111 + 7r~l 

+ -*~ + -~,~ + -~oc a + ~ a  + VW~ + X~,ot + V~,,,]~ (71a) 
) 
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where 

~ePff = ~.P "t- ~Lm + ~gh  (71b) 

"~ - ~ .  (71c) ~,P = ~ J  -Jr- 'rr a AiL 

~ = vj0j + Ix~A~ + t o ~  (71d) 

~gh  = C a MabCb = -- o:ail"al"~a,-, "-'ib'-,r'b (71 e) 

Let us denote ~b ~ = (B~, t~, 5, C, C, Ix, ~o, v), "rr~ = ('rra ~, ~r, ~), J~ = 
(J~, ~, {, ~, 4, Uk, Xz, Yj), J~ = ( J ~ ,  ~ ,  {~); the expression (71a) can be 
written as (31). 

Let us list the vector, axial-vector, and pseudoscalar currents: 

V~(x) = "~(x)'v~ra~(x) 

A~(x) -= -~(x)'y,'ysTat~(x) (72) 

P"(x) = -~(x)i~sT'~t~(x) 

respectively. For example, if the gauge group G is SU(3), then T a = l12X a, 
where h a (a = I, 2 . . . . .  8) are Gell-Mann matrices. The generating functional 
with extended exterior sources is given by 

Z [ J , J , , ' o , a , p ] = f ~ ) d ~ ' ~ b ' r r ~ , e x p { i l d 4 x [ ~ P e f f + J , ~ + ' ~  
"x 

IJ. l.t a } + J~{,r;~, + v,,V,~ + a,,Ar + p a p  '~] (73) 

where Va ~, at ,  and Pa are exterior sources with respect to V~, A~, and pa, 
respectively. Consider a transformation of 

O'(x) = [1 + ~-a(x)'ysTa]O(x ), 'rr'(x) = "rr(x)[l - ie.a(x)'ysT'q 

~'(x) = ~(x)[1 + i~a(x)'ysTa], ~ ' ( x )  = [1 - iea(x)~lsTa]'~(x ) ( 7 4 )  

The variation of canonical I P under the transformation (74) is given by 

~I p f d4x ~a(x)[O~Aa~ 2 m W  - ~ b = - gf't,~A~B~ ] (75) 

The change of Ab2(x) under the transformation (74) is given by 8A2 b = 
A~a(O, 5, ~---')~'a(x) �9 The Jacobian of the transformation (74) is equal to unity 
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(Suura and Young, 1973). Thus, the invariance of the generating functional 
(73) under the transformation (74) implies that 

f Uetx2A2a + i~lsT'~t~ ~ t~  '~ ~ , ~  [OIXA~ - 2mpa(x) - gfg~A~B~t b Ix + b b 

IX a Ix a -- i'ysTa'rt~l + iIn-~ls~ - iT~-~'YS~l + v ~ V i x  + aa~Aix + paSP a] 

{ I  I . I , a ~ a  1 
• exp i d4x [ ~ f  + J~,~b '~ + J~'rt,~ + va Vix + adAix + p a  Pa]  "= 0 

(76) 

Setting all exterior sources (including Uz) equal to zero, from (76) one obtains 

(OtT,[OixA~(x) _ 2mpa(x) _ ~ b Ix gf~cAix(x)Bc (x)]]0) = 0 (77) 

This is an expression for the partial conservation of axial-vector current 
(PCAC). Differentiating (76) with respect to vb~(y) and v~(z) and setting all 
exterior sources equal to zero, one also obtains 

(OlT*[(OixA~(x) - 2mpa(x) - gf~eAd(x)B~(x))V~(y)V~(z)][O) 

---- i~4 (X  - -  y)fge(O] T[Ae(X) V{((y)]  10) 

-q- i~4(x - z)fa,(OlT[Ae(x)V (y)]lO) (78) 

This is just the naive axial-vector Ward-Takahashi identity for the AVV. 
Suura and Young (1973) discussed the casef~c = 0, but the constraints were 
ignored. Here a complete and correct discussion is made from another point 
of view. 

As is well known, the usual BRS transformation is nonlinear for the 
ghost fields. Here we find that the Lagrangian ~V(x)  + ~e,h(X) is invariant 
under the following linear transformation: 

~ ' (x )  = O_(x) + i g r  ~ ' ( x )  = tr(x) - ig~r(x)~'~(x)T" 
tV(x  ) = t~(x) - ig~(x)r '~, "~'(x) = ~(x )  + ige'~(x)T'~-~(x) 

A~'(x) = Aa~(x) + l ~ ( x ) ,  ~a'(X) = 'rr~a(X) + gfac'rr~c(X)~'~(x) 
ca ' (x)  = Ca(x) + ig(L'~)ab~~ 

- -  - -  ig 
ca'(x) = Ca(x) - ig-fb(x)(L~r)ba~Cr(X) + -~ O~[-Cb(x)(LCr)baO~(X)] (79) 

where L ~ (tr = 1, 2 . . . . .  n) are representation matrices of the generator of 
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the gauge group in n-dimensional space. The change of ~2~Lm up to a divergence 
term under the transformation (79) is given by 

8~s = F~e'~(x) (80a) 

a ai 2 a aO 
= a a __ - -  0 0 7  (O) l ~ ' ~ r )  F,, v202,, + ~lAl,~ + ~ A %  Oi(I.z2A2o-) 

_]_ V 2 ( O } l ~ o . )  ..~ a aiO a ai al'-~al Oo~i(~o lO l,, )-- Oi(to lf~ l,,) + tO L, o l,, 

..j_ 2 a a (80b) 7 (tozO2,~) -O~(o~f~) + ~naO (.0 2a t,2~ r 

where O2~, Ai a, O a  etc., are functions of the canonical variables of the 
fields and their derivatives. The invariance of the generating functional (71 a) 
under the transformation (79) implies that 

j o  + if,~ + ig~T '~ - ig~lT'~-~a - ig~T'~-~ + ig~tT '~ 

- iOcJ~ + facJ"  ~ + g .~cJ~ ~jcl"--~ + ig~a(L~r)ab ~-~,r 

- ig~a(L~)ba -~b + igO~ O~ Ca (L~)ba Z[J, Jl] = 0 (81) 

where j0  are independent of the field variables. Introducing W[J, Jl] and 
F[d~% ~r~], one can still proceed in the same way as in the Abelian case. The 
expression can be reduced to 

gF 8F - gF i g ~ T  ~-~ j o  + iF,~ - igt~T'~g-~ + ig ' rrT-~ + i g ,  T - ~  - 

~F ~F ~F ~F 
B ~ _ ~ ~ _ _ _  igCa(L~)~ b -  + iO~ 8B~ gl~c ~ ~ gfac'rrc 8ar~ ~C b 

+ --~ L, ~ ~F . ~ ~F 

Differentiating (82) with respect to B~(x2) and B~(x3) and setting all fields 
(including the multiplier fields) equal to zero, one obtains 

g3F[0] gZF[0] 
O~ gB~(x)gB~(xz)gB~,(x3) = igfgag(X~ - xz) gB~(xOgB~(x3) (83) 

This formulation to obtain the Ward identity for proper vertices has a signifi- 
cant advantage in that one does not need to carry out the integration over 
momenta in the generating functional. 
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Differentiating (82) with respect to Ce(X2) and Cf(x3) and setting all 
fields equal to zero, one obtains 

82F[0] 82F[0] 
(L~r)ebS(Xl -- X2) ~ f ( x 3 ) ~ c b ( X l )  -- (L~)foS(Xl - x3) 8-~b(Xl)SCe(X2 ) 

83F[0] 
-k O~Xl -~f (x3)~fe(x2)~B~(Xl) (84) 

[ - {  g2r[0] 1)(L,r)af~(xl - x 3 ) l  = 0 

This new form of the Ward identity for the gauge-ghost field proper vertices 
differs from the usual Ward-Takahashi identity arising from the BRS invari- 
ance. 

7. CONCLUSION 

The canonical symmetry properties for a system with a singular Lagran- 
gian have been studied. We developed an algorithm for the construction of 
the gauge generator of such systems once the Hamiltonian and the constraints 
are given. The canonical Ward identity for the constrained Hamiltonian system 
has been deduced. Applying our formulation to the Abelian and non-Abelian 
gauge theories, we obtained the PCAC and some Ward identities for proper 
vertices. Using the canonical Ward identity to derive those relations has a 
significant advantage in that one does not need to carry out the integration 
over momenta as in the traditional treatment in configuration space. Moreover, 
one only requires the ~P and ~gh to be invariant under the (nonlocal) transfor- 
mation in non-Abelian gauge theory, which differs from usual BRS invariance. 

A P P E N D I X  

We present a transformation under which the O~-CaD~,~C b is invariant. 
The change of D~b~C b is 

D~,, f',b ig(L,r)abe~r(x)Db Ce (A I) b~ ~ = D~,~ C b + 

under the following transformation: 

C a' = C a + ig(L~)~be'~(x)C b 

A~' = A~ + ~ f ( x )  

Thus if we further consider a transformation of C~: 

O~C a' = O~C a - igO~'cb(LCr)bae~r(X ) 
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then the a~-CaDgb~C b is invariant under the following transformation: 

f ca'(x) = C~(x) + ig(L~)ab~(x)Cb(x) 
I ,  

-- ig O~[-~b(L,~)o,,O~e,~(x) l -Ca (x) -C~(x) - igCb(x)(L'~)b~'~(X) + 

l a~'(x) = A~(x) + D ~ ' ~ ( x )  

The second equation o f  (A2) can be also written as 

-Ca,(x ) = Ca(x) - ig-Cb(x)(L,~)Oa~O(x ) 

+ g I d4y A0(x, Y)Or 
) 

where 

c?A0(x, y) = i~4(x - y) 

Thus, (A2) is a nonlocal transformation. 
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